ON THE NATURE OF P_i-INDUCED, Mg²⁺-PREVENTED Ca²⁺ RELEASE IN RAT LIVER MITOCHONDRIA

Paolo BERNARDI and Daniela PIETROBON

CNR Unit for the Study of Physiology of Mitochondria and Institute of General Pathology, Via Loredan 16, 35100 Padova, Italy

Received 1 December 1981

1. Introduction

The pathway and role of mitochondrial Ca²⁺ efflux has assumed a major importance (review [1-3]). Although it is generally accepted that at steady state Ca²⁺ undergoes a continuous, slow recycling across the inner mitochondrial membrane, due to the simultaneous operation of the influx and efflux pathways [4], the nature and regulation of the efflux pathway are matters of debate [1-3].

Since 1964 it has been known that inorganic phosphate (P_i) releases Ca²⁺ from liver mitochondria [5]. The Ca²⁺ release is irreversible and accompanied by indefinite stimulation of respiration [5]. Although these phenomena have been attributed to increased Ca²⁺ cycling, and therefore to stimulation by P_i of a specific Ca²⁺ efflux pathway [6–8], direct evidence for such a specific pathway and for real Ca²⁺ cycling has never been provided.

Here, we aim to clarify the nature of P_i -induced, Mg^{2^+} -prevented Ca^{2^+} release and of the related respiratory stimulation. We show that, in the absence of Mg^{2^+} and BSA, phosphate addition to Ca^{2^+} -preloaded mitochondria causes a sharp decrease of ΔpH . Since $\Delta \psi$ tends to decline as well, the H^+ electrochemical gradient $(\Delta \widetilde{\mu}_{H^+})$ decreases dramatically. The nature of Ca^{2^+} release induced by P_i in the absence of Mg^{2^+} appears therefore to be due to reversal of the uniport

Abbreviations: EGTA, (ethylene-bis(oxoethylenenitrilo))tetraacetic acid; BSA, bovine serum albumin; Tris, 2-amino-2-hydroxymethyl-1,3-propanediol; Mops, 4-morpholinepropane sulfonic acid; HEDTA, N'-(2-hydroxyethyl)ethylene-diamine-N,N,N'-triacetic acid; TPMP $^+$, triphenylmethylphosphonium ion; DMO, 5,5-dimethyl-2,4-oxazolidinedione; pCa $_0$, -log [Ca $^{2+}$] outside the mitochondrial compartment; $\Delta\psi$, membrane potential

carrier, consequent to decrease of $\Delta\psi$ rather than to activation of an independent efflux pathway. Accordingly, the indefinite stimulation of respiration is not due to increased Ca²⁺ cycling but to increased H⁺ recycling across the inner membrane.

2. Materials and methods

Rat liver mitochondria were prepared as in [9] in 0.25 M sucrose, 10 mM Tris—HCl (pH 7.4) and 0.1 mM EGTA. The final washing was carried out in an EGTA-free medium and mitochondrial protein was assayed with the biuret method, using BSA as a standard. The incubation media are specified in the figure legends.

Oxygen consumption was monitored with a Clark oxygen electrode (Yellow Springs Instruments, OH) in a magnetically stirred, thermo-equilibrated vessel.

Ca²⁺ movements were monitored with a Ca²⁺-selective electrode (W. Möller, Zürich) in a waterjacket-thermostatted vessel equipped with magnetic stirring. The Ca²⁺-electrode was routinely calibrated with Ca²⁺-HEDTA buffers containing 50 mM HEDTA, 2 mM MgCl₂, Tris-Mops buffer (pH 7.0) and CaCl₂ to give the desired free [Ca²⁺] (apparent stability constants were taken as 2.57×10^5 (Ca²⁺) and 1.12×10^3 (Mg²⁺) at pH 7.0 [4]). The value of [Ca-HEDTA_{total}] was taken as being equal to the total [Ca²⁺], since [Ca²⁺] \ll [Ca-HEDTA_{total}].

In the isotope experiments mitochondria were incubated under the specified conditions with [14 C]-TPMP $^{+}$ (0.02 μ Ci/ml, corresponding to final conc. 20 μ M TPMP $^{+}$) or with [14 C]DMO (0.07 μ Ci/ml). After the specified time the suspensions were centrifuged at 30 000 \times g in a Sorvall RC2B refrigerated

supercentrifuge for 5 min. The clear supernatants were decanted, the tube wall blotted dry, and the pellets dissolved by treatment with 0.2 ml of a 1 mM Na-EDTA solution containing 0.1% (w/w) NaCl and 0.9% (w/w) sodium deoxycholate, at room temperature. The dissolved pellets and 100 μ l aliquots of the supernatants were added to 2 ml of Packard Insta-Gel scintillation fluid. Mitochondrial volumes were calculated on parallel samples containing 3H_2O (1 μ Ci/ml) and [^{14}C] sucrose (0.2 μ Ci/ml). The radioactivity was assayed with a Packard Tri Carb 300 C liquid scintillation spectrometer and the dpm were calculated using an external standard method and calibration curves to correct for quenching [10].

Membrane potential was calculated on [14C]TPMP⁺ distribution across the inner mitochondrial membrane. A correction for passive TPMP binding was introduced, measuring the amount of radioactivity present in mitochondria treated with FCCP + valinomycin + antimycin A in the presence 0-0.5 mM unlabeled TPMP⁺. Since the radioactivity found in the pellets did not decrease at still higher concentrations of TPMP⁺, the difference between the dpm at 0.5 mM and 0 TPMP is taken as passive binding. This correction rests on the assumption that the TPMP binding is the same in energized and de-energized mitochondria. The activity coefficient assumed for intramitochondrial TPMP was 1. Obviously, both assumptions are only approximately correct, and the values of $\Delta \psi$ could be overestimated. The membrane potential was calculated from the Nernst equation.

 Δ pH was measured on [14 C]DMO distribution across the inner membrane, according to [11].

3. Results

Fig.1 A shows the effects of P_i on steady state Ca^{2+} distribution in mitochondria incubated in the absence of Mg^{2+} and BSA. After the uptake of ~ 15 nmol Ca^{2+}/mg protein, addition of 2 mM P_i caused only a very slight increase of Ca^{2+} uptake. When a further $80~\mu M$ Ca^{2+} was added, Ca^{2+} uptake was followed by a sudden and irreversible Ca^{2+} release. Thus, in the absence of Mg^{2+} , P_i does not significantly alter the steady state Ca^{2+} distribution while it induces Ca^{2+} efflux at high Ca^{2+} loads. Fig.1B shows that, in the presence of Mg^{2+} and BSA, the steady state extramitochondrial pCa_0 is poised at lower levels, in accord with [4,12]. Addition of P_i then caused a slow Ca^{2+} efflux until a higher steady state pCa_0 was attained.

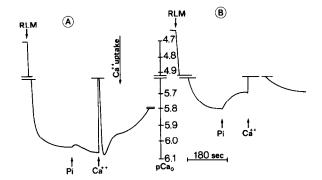


Fig.1. Prevention by Mg²⁺ and BSA of P_i-induced Ca²⁺ release. (A) Incubation medium contained 0.14 M sucrose, 40 mM choline chloride, 10 mM Tris-Mops (pH 7.0), 5 mM succinate-Tris, 16 μ M Ca²⁺. In (B) 2 mM MgCl₂ and 1 mg/ml BSA were added. Final volume 5 ml, 30° C. When indicated 5 mg mitochondria (RLM), 2 mM P_i and 80 μ M Ca²⁺.

The specific features of this novel P_i -stimulated Ca^{2+} efflux are analyzed in detail in [13]. It is important here to stress that in the presence of BSA and Mg^{2+} a further $80~\mu M$ Ca^{2+} pulse may be taken up, and that the same steady state Ca^{2+} distribution preceding the first Ca^{2+} addition is reached and maintained until anaerobiosis (not shown). Thus the process of complete and irreversible Ca^{2+} release caused by P_i is abolished by BSA and Mg^{2+} .

Fig.2 analyzes the nature of the respiratory stimu-

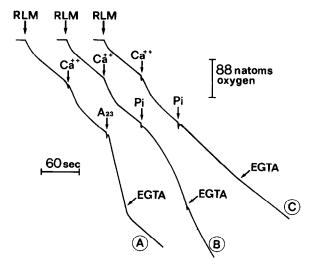


Fig. 2. Effect of BSA, Mg^{2+} and EGTA on respiratory stimulation following Ca^{2+} and P_i uptake. The incubation medium was the same as fig.1A plus 5 mM acetate—Tris. In (C) 2 mM MgCl₂ and 1 mg/ml BSA were added. Final volume 2 ml, 30° C. When indicated, 4 mg mitochondria (RLM), 90 μ M Ca^{2+} , 2 μ g A23187 (A 23), 2 mM P_i and 0.25 EGTA.

lation due to Ca²⁺ plus P_i. Trace 2A shows that addition of the electroneutral Ca²⁺ ionophore A23187 after a Ca²⁺ pulse caused an immediate increase of respiration, due to continuous Ca²⁺ recycling across the inner membrane [14]. This is confirmed by the fact that addition of EGTA brought the respiration to the state 4 level preceeding the addition of the ionophore. In trace 2B, after the Ca²⁺ pulse, 2 mM P_i was added instead of A23187. Respiration was gradually stimulated after a lag phase [5,7,8] while addition of EGTA had only a very slight effect. Trace 2C indicates that in the presence of Mg²⁺ and BSA, P_i had negligible effects on mitochondrial respiration, and that EGTA again slightly depressed state 4 respiration.

Table 1 analyzes the values of $\Delta\psi$, ΔpH and $\Delta\widetilde{\mu}_{H^+}$ in Ca²⁺-loaded mitochondria, and the effects of P_i on these values in the presence or absence of Mg²⁺ plus BSA.

In the absence of P_i , Ca^{2+} -loaded mitochondria maintained a ΔpH of 89 mV and a $\Delta \psi$ of 121 mV, with a total $\Delta \widetilde{\mu}_{H^+}$ of 210 mV. ΔpH was decreased to very low values after addition of P_i . $\Delta \psi$ on the other hand increased markedly in the presence but not in the absence of $Mg^{2+} + BSA$, almost completely compensating the drop in ΔpH in the former but not in the latter case. Furthermore $\Delta \psi$ was kept at a higher level after addition of EGTA (101 mV) but not after

Table 1 $\Delta \psi$ and ΔpH following Ca²⁺ and P_i uptake

Exp.	Addition(s) to basic medium	Δψ (mV)	ΔpH (mV)	$\Delta \widetilde{\mu}_{\text{H}^+}$ (mV)
1	None	121	89	210
2	2 mM P _i	47	0	47
3	2 mM P _i , 1 mg/ml BSA, 2 mM Mg ²⁺	164	10	174
4	2 mM P _i , 2 µM ruthe- nium red	56	4	60
5	2 mM P _i , 0.5 mM EGTA	101	10	111

The incubation medium was as in fig.1A plus 20 μ M [14C]-TPMP* ($\Delta\psi$ measurements) or carrier-free [14C]DMO ($\Delta\rho$ H measurements) in parallel samples. Total calcium was 80 nmol/mg protein. Further additions to the medium were as indicated. The experiments were started by the addition of 5 mg mitochondria to 2 ml final vol. at room temperature. In exp. 1-3 $\Delta\psi$ and $\Delta\rho$ H were determined after 4 min incubation. In exp. 4,5, ruthenium red or EGTA were added after 4 min incubation, and $\Delta\psi$ and $\Delta\rho$ H were determined after a further 1 min. Matrix volumes were calculated on parallel samples containing 3 H₂O and [14C] sucrose. For further explanation see section 2

addition of ruthenium red. Table 1 thus shows that partial restoration of $\Delta \widetilde{\mu}_{H^+}$ requires removal of Ca^{2^+} from the medium and not simple abolition of Ca^{2^+} cycling by ruthenium red.

4. Discussion

Since the early fifties it has been known that addition of P_i results in a large-amplitude mitochondrial swelling which is reversed by ATP + Mg²⁺ (review [15,16]). The P_i-induced swelling is markedly enhanced by the simultaneous uptake of Ca²⁺, and is accompanied by an increased permeability of the mitochondrial membrane and by subsequent release of matrix constituents [17,18]. In 1964 it was shown that P. releases Ca²⁺ from mitochondria [5]. Ca²⁺ release required a threshold concentration of Ca2+ or Pi, and was accompanied by an indefinite stimulation of the respiration, which was attributed to increased Ca2+ cycling across the inner membrane [5]. This view has been re-evaluated by different groups [6-8], and it has been tacitly assumed that stimulation of respiration after completion of Ca2+ uptake is a reflection of increased Ca²⁺ cycling [6-8]. Due to this view, it has been concluded that Sr2+, at variance from Ca2+, is unable to cycle across the mitochondrial membrane from the observation that addition of P_i after Sr²⁺ uptake does not result in stimulation of respiration [7].

Our data indicate that the P_i-induced, Mg²⁺- and BSA-prevented Ca²⁺ efflux is due to a reversal of Ca²⁺ transport through the uniport carrier following a decrease of the transmembrane electrical potential. Furthermore, the related increase in respiration is mainly due to an increased H⁺ recycling and not to a Ca²⁺ recycling. This is supported by four lines of evidence:

- (i) The P_i-induced Ca²⁺ efflux occurring in the absence of Mg²⁺ (fig.1A) and the related increase of respiration (fig.2) are prevented by Mg²⁺ and BSA, which are agents well known to protect against membrane damage [19];
- (ii) The P_i-induced Ca²⁺ efflux does not lead to a new set point for Ca²⁺ distribution, as required by the establishment of a kinetic steady state between Ca²⁺ influx and efflux processes, but rather to a complete Ca²⁺ release;
- (iii) The stimulation of respiration induced by Ca²⁺ plus P_i is almost unaffected by the addition of EGTA, which is expected to stop Ca²⁺ cycling, as it occurs in the case of the ionophore A23187 (fig.2A);

(iv) The data of table 1 indicate that in the absence of P_i , Ca^{2+} uptake results in establishment of a large ΔpH .

In the absence of Mg²⁺ and BSA, addition of P_i causes a collapse of ΔpH without parallel increase of $\Delta \psi$. The lack of $\Delta \psi$ rise, to an extent complementary to the depression of ΔpH , as required to maintain an unaltered $\Delta \widetilde{\mu}_{LI}$, cannot be ascribed to energy-dissipating Ca²⁺ recycling, since ruthenium red does not cause increase of $\Delta \psi$. The partial $\Delta \psi$ recovery induced by EGTA can be explained by inhibition of Ca²⁺-stimulated phospholipases [20]. Thus the finding of a 5 mV decrease of the membrane potential upon addition of 1.6 mM P_i, with concomitant Ca²⁺ efflux [6], means in fact a presumable 60 mV decrease of $\Delta \widetilde{\mu}_{uv}$. Furthermore, when $\Delta \psi$ is below the critical value of ~125 mV, Ca²⁺ distribution is at electrochemical equilibrium, and any decrease of $\Delta \psi$ allows Ca²⁺ efflux to occur via a reversal of the uniport Ca2+ car-

In conclusion we suggest that distinction between a Ca^{2+} efflux occurring through a reversal of the Ca^{2+} uniporter or through activation of an independent efflux pathway should be achieved by a number of different criteria, among which the attainment of a new steady state and the determination of both ΔpH and $\Delta \psi$ play a critical role. On the basis of these criteria evidence for a $\Delta \psi$ -modulated pathway for Ca^{2+} efflux, stimulated by P_i and requiring Mg^{2+} , is presented in [13].

Acknowledgements

We are indebted to Professor G. F. Azzone for helpful discussions and for reading the manuscript. The expert technical assistance of Mr Luciano Pregnolato in the isotope experiments is gratefully acknowledged. We thank Mrs Franca Schiavon Mazzari for the excellent typewriting of the manuscript.

References

- [1] Saris, N. E. and Ackerman, K. E. O. (1980) Curr. Top. Bioenerg. 10, 103-179.
- [2] Carafoli, E. (1979) FEBS Lett. 104, 1-5.
- [3] Nicholls, D. G. and Crompton, M. (1980) FEBS Lett. 111, 261-268.
- [4] Nicholls, D. G. (1978) Biochem. J. 176, 463-474.
- [5] Rossi, C. S. and Lehninger, A. L. (1964) J. Biol. Chem. 239, 3971-3980.
- [6] Roos, I., Crompton, M. and Carafoli, E. (1980) Eur. J. Biochem. 110, 319-325.
- [7] Coehlo, J. L. C. and Vercesi, A. E. (1980) Arch. Biochem. Biophys. 204, 141-147.
- [8] Zoccarato, F., Rugolo, M., Siliprandi, D. and Siliprandi, N. (1981) Eur. J. Biochem. 114, 195-199.
- [9] Massari, S., Balboni, E. and Azzone, G. F. (1972) Biochem. Biophys. Acta 283, 16-22.
- [10] Kobayashi, Y. and Maudsley, D. V. (1969) Methods Biochem. Anal. 17, 55-133.
- [11] Addanki, S., Cahill, F. D. and Sotos, J. F. (1968) J. Biol. Chem. 243, 2337-2348.
- [12] Becker, G. L. (1980) Biochim. Biophys. Acta 591, 234-239.
- [13] Bernardi, P. and Azzone, G. F. (1982) FEBS Lett. 139, 13-16.
- [14] Pfeiffer, D. R., Hutson, S. M., Kauffman, R. F. and Lardy, H. A. (1976) Biochemistry 15, 2690-2697.
- [15] Lehninger, A. L. (1962) Physiol. Rev. 42, 467.
- [16] Chappell, J. B. and Greville, G. D. (1963) Biochem. Soc. Symp. Cambr. 23, 39.
- [17] Ernster, L. (1956) Exp. Cell Res. 10, 704-720.
- [18] Meisner, H. and Klingenberg, M. (1968) J. Biol. Chem. 243, 3631-3639.
- [19] Azzi, A. and Azzone, G. F. (1965) Biochim. Biophys. Acta 113, 438-444.
- [20] Pfeiffer, D. R., Schmidt, P. C., Beatrice, M. C. and Schmid, H. H. O. (1979) J. Biol. Chem. 254, 11485-11494.